Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of the Exponential-type Error Bounds for Multiquadric and Gaussian Interpolations

In the 1990’s exponential-type error bounds appeared in the theory of radial basis functions. For multiquadric interpolation it is O(λ 1 d ) as d → 0, where λ is a constant satisfying 0 < λ < 1. For Gaussian interpolation it is O(C d) c′ d as d → 0 where C ′ and c are constants. In both cases the parameter d, called fill distance, measures the spacing of the points where interpolation occurs. T...

متن کامل

On Error Formulas for Multivariate Polynomial Interpolation

In this paper we prove that the existence of an error formula of a form suggested in [2] leads to some very specific restrictions on an ideal basis that can be used in such formulas. As an application, we provide a negative answer to one version of the question posed by Carl de Boor (cf. [2]) regarding the existence of certain minimal error formulas for multivariate interpolation. §

متن کامل

On Error Formulas for Multivariate Interpolation

In this paper we prove that the existence of an error formula of a form suggested in [2] leads to some very specific restrictions on an ideal basis that can be used in such formulas. As an application, we provide a negative answer to one version of the question posed by Carl de Boor (cf. [2]) regarding the existence of certain minimal error formulas for multivariate interpolation.

متن کامل

A Multivariate Form of Hardy's Inequality and L P -error Bounds for Multivariate Lagrange Interpolation Schemes

The following multivariate generalisation of Hardy's inequality, that for m ? n=p > 0

متن کامل

Bounds for orthogonal polynomials for exponential weights

Orthogonal polynomials pn(W ; x) for exponential weights W 2 = e−2Q on a nite or in nite interval I , have been intensively studied in recent years. We discuss e orts of the authors to extend and unify some of the theory; our deepest result is the bound |pn(W ; x)|W (x)|(x − a−n)(x − an)|6C; x∈ I with C independent of n and x. Here a±n are the Mhaskar–Rahmanov–Sa numbers for Q and Q must satisf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1992

ISSN: 0021-9045

DOI: 10.1016/0021-9045(92)90058-v